Some coupling and recoupling coefficients for symmetric representations of SO_{n}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 2035
(http://iopscience.iop.org/0305-4470/20/1/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:40

Please note that terms and conditions apply.

Some coupling and recoupling coefficients for symmetric representations of $\mathrm{SO}_{\boldsymbol{n}}$

S Ališauskas
Institute of Physics, Academy of Sciences of the Lithuanian SSR, Vilnius, 232600, USSR

Received 21 August 1985, in final form 7 April 1986

Abstract

A new expression of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ isoscalar factors (reduced Wigner coefficients) for coupling $I_{1} \times I_{2}$ to $\left[L_{1} L_{2}\right]$ is obtained. Special classes of these factors (including those used together with special isofactors of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n}$ in O_{n}-scalar basis functions depending on the microscopic collective variables of a nucleus) are shown as being proportional to the $6 j$-coefficients of SU_{2} with standard or quartervalued parameters. Group chain reflection symmetry of isofactors is discovered which allows us to interchange certain reflected parameters of irreducible representations of the group and its subgroup. Recoupling coefficients (61 -coefficients) for symmetric representations of $\mathrm{SO}_{n}(n \geqslant 5$) are expanded in terms of $6 j$-coefficients of SU_{2} with standard or quartervalued parameters. New expressions for special Clebsch-Gordan and $6 j$-coefficients of $\mathrm{SU}_{2}\left(\mathrm{SO}_{3}\right)$ are presented.

1. Introduction

In the explicit expressions of $\mathrm{U}_{3 n} \supset \mathrm{U}_{3} \times \mathrm{U}_{n} \supset \mathrm{O}_{n}$ basis functions depending on the microscopic collective variables of the nucleus (Vanagas and Kalinauskas 1974, Vanagas 1977, 1980), special isofactors (reduced Wigner coefficients) of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n-1}$ are needed (together with those of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n}$). The isofactors of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n}$ for O_{n}-scalar basis functions (as well as for a closed shell case) were found by Ališauskas (1986a) (for more detailed references see Ališauskas 1986a). For the most general collective basis functions in a two-dimensional case (which may be used as a recurrent step for a three-dimensional case, see Vanagas and Katkevičius (1983)) special isofactors of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n}$ were found by Ališauskas (1984).

In both two- and three-dimensional cases, isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$,

$$
\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \tag{1.1}\\
l_{1}^{\prime} & l_{2}^{\prime} & {\left[L_{1}^{\prime} L_{2}^{\prime}\right]_{n-1}}
\end{array}\right]
$$

for coupling the states of symmetric irreducible representations (irreps) l_{1} and l_{2}, with particular restrictions on irreps of the subgroup, are needed. Isofactors with all three irreps symmetric (i.e. with $L_{2}=L_{2}^{\prime}=0$) were considered by Gavrilik (1973) and Kildyushov and Kuznetsov (1973), but only Norvaišas and Ališauskas (1974a) observed that such isofactors are the analytical continuation of semistretched isofactors of $\mathrm{Sp}_{4} \supset \mathrm{SU}_{2} \times \mathrm{SU}_{2}$ of the second kind, introduced by Ališauskas and Jucys (1971). The substitution group technique of $\mathrm{Sp}_{4}\left(\mathrm{SO}_{5}\right)$ (Ališauskas and Jucys 1969) allowed us to derive expressions (Norvaišas and Ališauskas 1974a, see also (35) of Ališauskas 1983) for special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ and $\mathrm{SO}_{n} \supset \mathrm{SO}_{n}+\mathrm{SO}_{n-n}$ with $L_{2}=0$, which are considerably more convenient for the cases close to the stretched ones (i.e. with small values of $l_{1}+l_{2}-L_{1}$).

The relations of analytical continuation between the isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}(1.1)$ (and, more generally, of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n^{\prime}}+\mathrm{SO}_{n \cdots n^{\prime}}$) and the isofactors of $\mathrm{Sp}_{4} \supset \mathrm{SU}_{2} \times \mathrm{SU}_{2}$,

$$
\left[\begin{array}{ccc}
\left\langle K_{1} I_{1}\right\rangle & \left\langle K_{2} A_{2}\right\rangle & \langle K .\rangle^{u} \tag{1.2}\\
I_{1} J_{1} & I_{2} J_{2} & I J
\end{array}\right]
$$

with the parameters

$$
\begin{array}{lcc}
K_{1}=-\frac{1}{4}\left(2 L_{2}^{\prime}+n-1\right) & K_{2}=-\frac{1}{4} & K=-\frac{1}{4}\left(2 L_{2}+n\right) \\
\Lambda_{1}=-\frac{1}{4}\left(2 L_{1}^{\prime}+n-1\right) & \Lambda_{2}=-\frac{1}{4}(2 \delta+1) & A=-\frac{1}{4}\left(2 L_{1}+n\right) \\
I_{1}=-\frac{1}{4}\left(2 l_{1}^{\prime}+n-1\right) & I_{2}=-\frac{1}{4}\left(2 \delta_{1}+1\right) & I=-\frac{1}{4}\left(2 l_{1}+n\right) \tag{1.3}\\
J_{1}=-\frac{1}{4}\left(2 l_{2}^{\prime}+n-1\right) & J_{2}=-\frac{1}{4}\left(2 \delta_{2}+1\right) & J=-\frac{1}{4}\left(2 l_{2}+n\right)
\end{array}
$$

($\delta_{1}, \delta_{2}, \delta=0$ or 1 so that $l_{1}-l_{1}^{\prime}-\delta_{1}, l_{2}-l_{2}^{\prime}-\delta_{2}$ and $L_{1}+L_{2}-L_{1}^{\prime}-L_{2}^{\prime}-\delta$ are even integers), as well as

$$
\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \tag{1.4}\\
l_{1}^{\prime} & l_{2}^{\prime} & {\left[L_{1}^{\prime} L_{2}^{\prime}\right]_{n-1}}
\end{array}\right]=\left[\begin{array}{lll}
l_{1}+\frac{1}{2}(n-5) & l_{2}+\frac{1}{2}(n-5) & {\left[L_{1}+\frac{1}{2}(n-5), L_{2}+\frac{1}{2}(n-5)\right]_{4}} \\
l_{1}^{\prime}+\frac{1}{2}(n-5) & l_{2}^{\prime}+\frac{1}{2}(n-5) & {\left[L_{1}^{\prime}+\frac{1}{2}(n-5), L_{2}^{\prime}+\frac{1}{2}(n-5)\right]_{4}}
\end{array}\right]
$$

allowed us (Norvaišas and Ališauskas 1974b) to apply the results and techniques developed for $\mathrm{Sp}_{4} \supset \mathrm{SU}_{2} \times \mathrm{SU}_{2}\left(\mathrm{SO}_{5} \supset \mathrm{SO}_{4}\right)$ by Ališauskas and Jucys $(1969,1971)$ in the consideration of the more general isofactors (1.1). (Relations (1.3) and (1.4) were proved later by Ališauskas (1974, 1976, 1983) on the grounds of the complementarity of the groups SO_{n} and $\mathrm{Sp}(4, R)$.)

In particular, relation (1.4) applied to different forms and variants of semistretched isofactors of Sp_{4} (derived by the substitution group technique of Ališauskas and Jucys (1969)) allowed the expression of the isofactors (1.1) with parameters $l_{1}+l_{2}=L_{1}+L_{2}$ or $l_{1}-l_{2}=L_{1}-L_{2}$ as double sums (see (3.5) and (3.7) of Norvaišas and Ališauskas (1974b)). Similarly, relations (1.3) allowed us to express the isofactors (1.1) with parameters $L_{2}^{\prime}=L_{2}$ or $L_{1}^{\prime}=L_{1}$ as double sums (see (4.1) and (4.4) of Norvaišas and Ališauskas (1974b)). So all the above-mentioned cases of isofactors (1.1) appeared to be the incarnations of some more universal function, being of importance in the Wigner-Racah calculus of different Lie groups (see Ališauskas 1983) and generally represented as a triple sum.

The weight-lowering operators of Sp_{4} (Ališauskas and Jucys 1971), together with (1.4), allows the expansion of the general isofactors (1.1) in terms of the abovementioned particular cases ${ }^{\dagger}$ and to express them as sixfold sums. Expression (3.9) of Ališauskas and Norvaišas (1975), used together with (1.4), may be convenient for the cases of (1.1) close to the stretched ones. All the above-mentioned expressions simplify themselves with a decrease of the differences $l_{1}-l_{1}^{\prime}, l_{2}-l_{2}^{\prime}, L_{1}-L_{1}^{\prime}$ and $L_{2}-L_{2}^{\prime}$.

However, they remain complicated for small values of, e.g. l_{2}^{\prime} or L_{1}^{\prime}, and do not satisfy the criterion of the polynomial representability (cf Castilho-Alcarás and Vanagas 1984,1985) of the special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ needed in the microscopic theory of collective nuclear states.

In this paper, the following special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ for coupling of two symmetric irreps are shown to be proportional to the $6 j$-coefficients of SU_{2} with standard

[^0]or quartervalued parameters ${ }^{\dagger}$: (i) with $l_{1}^{\prime}=L_{1}^{\prime}$ and $l_{2}^{\prime}=L_{2}^{\prime}=0$; (ii) with $l_{1}^{\prime}=l_{2}^{\prime}$ and $L_{1}^{\prime}=L_{2}^{\prime}=L_{2}$, and (iii) with $l_{1}=l_{2}=l$ and $L_{1}=L_{2}=L_{1}^{\prime}$. The isofactors of the two last classes appear to be interrelated by a special procedure of analytical continuation which allows us to interchange (after definite reflections) the parameters of irreps of the group and its subgroup and may be generalised for a wider class of isofactors. A new expression for the general isofactors (1.1) is obtained, which is convenient for low values of the difference $L_{1}^{\prime}-L_{2}^{\prime}$.

The above-mentioned results, as well as SU_{2} recoupling techniques and methods used for the construction of biorthogonal systems (Ališauskas 1978b), allow us to expand the SO_{n} recoupling coefficients (6 l -symbols) for all symmetric irreps in terms of $6 j$-coefficients of SU_{2} (with standard or quartervalued parameters). Originally these recoupling coefficients were supposed to be used for expansion of special isofactors of $\mathrm{SU}_{n} \supset \mathrm{SO}_{n}$, in a more convenient form presented by Ališauskas (1986a). These expressions will find applications in nuclear theory.

2. Isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ with special restrictions for the irreps of the subgroup

Let us prove the expression for special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ needed for the microscopic theory of the collective nuclear states:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l^{\prime} & 0 & l^{\prime}
\end{array}\right] } \\
&=(-1)^{\left(l_{1}+l_{2}+L_{1}-L_{2} / 2+l^{\prime}+n\right.}\left((n-3)\left(2 L_{1}+n-2\right)\left(2 L_{2}+n-4\right)\left(L_{1}-L_{2}+1\right)\right. \\
&\left.\times\left(L_{1}+L_{2}+n-3\right) \frac{\left(L_{1}+n-4\right)!\left(L_{2}+n-5\right)!l^{\prime}!l_{2}!}{2\left(l^{\prime}+n-4\right)!\left(l_{2}+n-3\right)!\left(L_{1}+1\right)!L_{2}!}\right)^{1 / 2} \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2}\left(L_{1}+L_{2}+n\right)-2 & \frac{1}{2} l_{1}+\frac{1}{4} n-1 & \frac{1}{2} l_{2}+\frac{1}{4} n-1 \\
\frac{1}{2} l_{1}+\frac{1}{4} n-1 & \frac{1}{2}\left(L_{1}-L_{2}\right) & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} . \tag{2.1}
\end{align*}
$$

Here $n>4$; the $n=3$ case differs in phase factor (cf (2.14) of Ališauskas 1978a \ddagger); the correct dimensional factor $\left[\left(L_{1}+L_{2}+1\right)\left(L_{1}-L_{2}+1\right) /\left(l_{2}+1\right)\right]^{1 / 2}$ in the RHS of (2.1), for $n=4$, may be found in the framework of angular momentum theory.

In the RHS of (2.1) the usual $6 j$-coefficient of SU_{2} appears for n even. For arbitrary n it may be calculated by means of the following expression:

$$
\begin{align*}
&\left\{\begin{array}{ccc}
\frac{1}{2}\left(L_{1}+L_{2}+n\right)-2 & \frac{1}{2} l_{1}+\frac{1}{4} n-1 & \frac{1}{2} l_{2}+\frac{1}{4} n-1 \\
\frac{1}{2} l_{1}+\frac{1}{4} n-1 & \frac{1}{2}\left(L_{1}-L_{2}\right) & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} \\
&=(-1)^{\left.l_{1}+l_{2}+L_{1}-L_{2}\right) / 2+l^{\prime}+n} 2^{L_{2}+n / 2-1} \nabla_{n[0,4]}\left(l_{1} l_{2} ; L_{1} L_{2}\right) \\
& \times\left(2 l^{\prime}+n-4\right)!!\left(\frac{\left(L_{1}-l^{\prime}\right)!\left(l_{1}-l^{\prime}\right)!\left(l^{\prime}-L_{2}\right)!\left(L_{2}+l^{\prime}+n-4\right)!}{\left(l_{1}+l^{\prime}+n-3\right)!\left(L_{1}+l^{\prime}+n-3\right)!}\right)^{1 / 2} \\
& \times \sum_{z} \frac{(-1):\left[\frac{1}{2}\left(l_{1}+l_{2}+L_{1}-L_{2}\right)+l^{\prime}+n-3-z\right]!}{z!\left(l^{\prime}-L_{2}-z\right)!\left[\frac{1}{2}\left(l_{1}+l_{2}-L_{1}-L_{2}\right)-z\right]!\left[\frac{1}{2}\left(L_{1}-L_{2}-l_{1}+l_{2}\right)-z\right]!} \\
& \times\left\{\left(2 l^{\prime}+n-4-2 z\right)!!\left[\frac{1}{2}\left(l_{1}-l_{2}+L_{1}+L_{2}\right)-l^{\prime}+z\right]!\left(2 L_{2}+n-4+2 z\right)!!\right\}^{-1} . \tag{2.2}
\end{align*}
$$

[^1]Here the following notation of Ališauskas (1984) is used:

$$
\begin{array}{ll}
\nabla_{n\left[l_{1} \ldots i_{k}\right]}\left(l_{1} l_{2} ; L_{1} L_{2}\right)=\left(\prod_{i=0}^{7} A_{i}\right)^{1 / 2}\left(\prod_{i \rightarrow[i, \ldots, k]} A_{i}\right)^{-1} \\
A_{0}=\left(l_{1}+l_{2}+L_{1}+L_{2}+2 n-6\right)!! & A_{4}=\left(l_{1}+l_{2}+L_{1}-L_{2}+n-2\right)!! \\
A_{1}=\left(L_{1}+L_{2}-l_{1}+l_{2}+n-4\right)!! & A_{5}=\left(L_{1}-L_{2}-l_{1}+l_{2}\right)!! \tag{2.4}\\
A_{2}=\left(l_{1}-l_{2}+L_{1}+L_{2}+n-4\right)!! & A_{6}=\left(l_{1}-l_{2}+L_{1}-L_{2}\right)!! \\
A_{3}=\left(l_{1}+l_{2}-L_{1}+L_{2}+n-4\right)!! & A_{7}=\left(l_{1}+l_{2}-L_{1}-L_{2}\right)!!
\end{array}
$$

Particular cases of (2.1) (without sum) may be checked by comparison with the results of Norvaišas and Ališauskas (1974a, b), for example, when $L_{1}+L_{2}=l_{1}+l_{2}$ the equivalent result follows from their corrected equation (3.5) (with a changed sign before the denominator of the penultimate term). On the other hand, when $L_{1}-L_{2}=$ $l_{1}-l_{2}$ their equation (3.7) may be used for control.

The most general case of (2.1) may be proved by means of the recurrence relation

$$
\begin{align*}
& {\left[\begin{array}{ccc}
l_{1}-1 & 1 & {\left[l_{1} 0\right]_{n}} \\
l^{\prime} & 0 & l^{\prime}
\end{array}\right]\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l^{\prime} & 0 & l^{\prime}
\end{array}\right] } \\
&= \sum_{ \pm}\left\langle l_{1}-1\right. \\
& 1\left(l_{1}\right) l_{2}\left[L_{1} L_{2}\right]_{n}\left|l_{1}-1 ; l_{2} 1\left(l_{2} \pm 1\right)\left[L_{1} L_{2}\right]_{n}\right\rangle \tag{2.5}\\
& \times\left[\begin{array}{ccc}
l_{2} & 1 & {\left[l_{2} \pm 1,0\right]_{n}} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
l_{1}-1 & l_{2} \pm 1 & {\left[L_{1} L_{2}\right]_{n}} \\
l^{\prime} & 0 & l^{\prime}
\end{array}\right] .
\end{align*}
$$

The recoupling coefficients of SO_{n} on the RHS are found by induction and are expressed as

$$
\begin{align*}
&\left\langle l_{1}-1 \quad 1\left(l_{1}\right) l_{2}\right. {\left[L_{1} L_{2}\right]_{n}\left|l_{1}-1 ; l_{2} 1\left(l_{2}-1\right)\left[L_{1} L_{2}\right]_{n}\right\rangle } \\
&= \frac{1}{2}\left[\left(l_{1}+l_{2}-L_{1}-L_{2}\right)\left(l_{1}+l_{2}-L_{1}+L_{2}+n-4\right)\left(l_{1}+l_{2}+L_{1}-L_{2}+n-2\right)\right. \\
&\left.\times\left(l_{1}+l_{2}+L_{1}+L_{2}+2 n-6\right) / l_{1}\left(2 l_{1}+n-4\right)\left(l_{2}+n-3\right)\left(2 l_{2}+n-2\right)\right]^{1 / 2} \tag{2.6}\\
&\left\langle l_{1}-1 \quad 1\left(l_{1}\right) l_{2}\left[L_{1} L_{2}\right]_{n} \mid l_{1}-1 ; l_{2} 1\left(l_{2}+1\right)\left[L_{1} L_{2}\right]_{n}\right\rangle \\
&= \frac{1}{2}\left[\left(l_{1}-l_{2}+L_{1}-L_{2}\right)\left(L_{1}-L_{2}-l_{1}+l_{2}+2\right)\left(L_{1}+L_{2}+l_{1}-l_{2}+n-4\right)\right. \\
&\left.\times\left(L_{1}+L_{2}-l_{1}+l_{2}+n-2\right) / l_{1}\left(2 l_{1}+n-4\right)\left(l_{2}+1\right)\left(2 l_{2}+n-2\right)\right]^{1 / 2} . \tag{2.7}
\end{align*}
$$

The auxiliary isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ with maximal values of parameters of SO_{n-1} irreps or with $l_{2}=1$ (needed for deriving (2.6), (2.7) and for the explicit form of (2.5)) may be found from (4.1) of Norvaišas and Ališauskas (1974b).

Equation (2.5) appears to be equivalent to the recursive formula for $6 j$-coefficients of SU_{2} (which may be obtained immediately from the Biedenharn-Elliott identity (Biedenharn 1953, Elliott 1953) or from (30.16) of Jucys and Bandzaitis (1977), taking into account (29.18)).

Isofactors of type (1.1) gain the phase factor (-1$)^{L_{2}-L_{2}}$ after the permutation $l_{1} \leftrightarrow l_{2}$, $l_{1}^{\prime} \leftrightarrow l_{2}^{\prime}$.

Now let us present another expression for special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ needed for the theory of collective states:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l^{\prime} & l^{\prime} & {\left[L_{2} L_{2}\right]_{n-1}}
\end{array}\right]} \\
= \\
=(-1)^{l_{1}+l_{2}+L_{1}-L_{2} / 2+l^{\prime}+n}\left[\frac{1}{2}\left(2 L_{1}+n-2\right)\left(2 l^{\prime}+n-3\right)\right]^{1 / 2} \tag{2.8}\\
\\
\\
\end{array} \quad \times \begin{array}{ccc}
\frac{1}{2}\left(l_{1}-L_{2}\right) & \frac{1}{2} l_{2}+\frac{1}{4} n-1 & \frac{1}{2} L_{1}+\frac{1}{4} n-1 \\
\frac{1}{2} l_{2}+\frac{1}{4} n-1 & \frac{1}{2}\left(l_{1}+L_{2}+n\right)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} . ~ \$
$$

In this case the isofactor is equivalent to a recoupling coefficient of SU_{2} (with quartervalued parameters for n odd). The particular cases of (2.1) and (2.8) with $L_{2}=0$ are related by a symmetry relation (depending on dimensions of irreps). This symmetry relation allows us to easily check the normalisation of the general case of (2.1). Relation (1.4) allows us to prove (2.8) for arbitrary L_{2}.

The remaining isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$ needed for constructing O_{n}-scalar basis functions depending on microscopic collective variables of the nucleus (as well as for the closed shell case) may be expressed in terms of some dimensional factors with the help of symmetry relations (not necessarily particular cases of (1.1)).

3. Isofactors of SO_{n} with two equal rows of resulting irrep and chain reflection symmetry

Expression (46) of Ališauskas and Jucys (1971) for special isofactors of $\mathrm{Sp}_{4}\left(\mathrm{SO}_{5}\right)$, together with the symmetry properties of Sp_{4} isofactors (see Hecht 1965) and relation (2.4), allows us to obtain the following expression for special isofactors of $\mathrm{SO}_{n} \supset \mathrm{SO}_{n-1}$:
$\left[\begin{array}{ccc}l & l & {[L L]_{n}} \\ l_{1}^{\prime} & l_{2}^{\prime} & {\left[L L_{2}^{\prime}\right]_{n-1}}\end{array}\right]$

$$
\begin{align*}
= & (-1)^{l_{1} l_{1}+n}\left(\frac{(2 L+n-4)(2 L+n-2)\left(2 l_{1}^{\prime}+n-3\right)\left(2 l_{2}^{\prime}+n-3\right)}{2(2 l+n-2)\left(L-L_{2}^{\prime}+1\right)\left(L+L_{2}^{\prime}+n-4\right)}\right)^{1 / 2} \\
& \times\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\} \tag{3.1a}
\end{align*}
$$

$$
=(-1)^{l-l^{\prime}} \nabla_{n-1[-]}\left(l_{1}^{\prime} l_{2}^{\prime} ; L L_{2}\right)\left(\frac{(2 L+n-4)(2 L+n-2)}{\left(L-L_{2}^{\prime}+1\right)\left(L+L_{2}^{\prime}+n-4\right)}\right.
$$

$$
\left.\times \frac{\left(2 l_{1}^{\prime}+n-3\right)\left(2 l_{2}^{\prime}+n-3\right)(l-L)!\left(l-l_{1}^{\prime}\right)!\left(l-l_{2}^{\prime}\right)!}{(2 l+n-2)(l+L+n-3)!\left(l+l_{1}^{\prime}+n-3\right)!\left(l+l_{2}^{\prime}+n-3\right)!}\right)^{1 / 2}
$$

$$
\times \sum_{=} \frac{(-1)^{z}(2 l+n-3-z)!2^{-\left(l_{1}+l_{2}+L-L L_{2}^{\prime}+n-4 / / 2\right.}}{z!(l-L-z)!\left(l-l_{1}^{\prime}-z\right)!\left(l-l_{2}^{\prime}-z\right)!(2 l+n-3-2 z)!!}
$$

$$
\begin{equation*}
\times\left\{\left[\frac{1}{2}\left(l_{1}^{\prime}+l_{2}^{\prime}+L-L_{2}^{\prime}\right)-l+z\right]!\left(l_{1}^{\prime}+l_{2}^{\prime}+L+L_{2}^{\prime}-2 l+n-5+2 z\right)!!\right\}^{-1} . \tag{3.1b}
\end{equation*}
$$

Here
$a=\frac{1}{4}\left(2 l-l_{1}^{\prime}+l_{2}^{\prime}-L+L_{2}^{\prime}\right) \quad b=\frac{1}{4}\left(2 l+l_{1}^{\prime}-l_{2}^{\prime}-L+L_{2}^{\prime}+n-5\right)$
$c=\frac{1}{2}(l+n-4)+\frac{1}{4}\left(L-l_{1}^{\prime}+l_{2}^{\prime}+L_{2}^{\prime}\right) \quad d=\frac{1}{4}\left(2 l+l_{1}^{\prime}-l_{2}^{\prime}+L-L_{2}^{\prime}+n-3\right)$
$e=\frac{1}{4}(2 L+n-5) \quad f=\frac{1}{2}\left(l_{1}^{\prime}+l_{2}^{\prime}+n-4\right)$.
The parameters (3.2) of the $6 j$-coefficient take standard values, from angular momentum theory, for n odd. Otherwise the quartervalued parameters appear.

Expressions (2.8) and (3.1a) may be obtained from each other by means of the analytical continuation relation

$$
\begin{align*}
& {\left[\begin{array}{lll}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l_{1}^{\prime} & l_{2}^{\prime} & {\left[L_{1}^{\prime} L_{2}^{\prime}\right]_{n-1}}
\end{array}\right] } \\
&=(-1)^{\left(L_{1}-L_{2}+l_{1}-l_{2}-L_{1}^{\prime}+L_{2}^{\prime}-l_{1}+l_{2}^{\prime} / 2\right.}\left(\frac{\left(L_{1}-L_{2}+1\right)\left(L_{1}+L_{2}+n-3\right)}{\left(L_{1}^{\prime}-L_{2}^{\prime}+1\right)\left(L_{1}^{\prime}+L_{2}^{\prime}+n-4\right)}\right. \\
&\left.\times \frac{\left(2 L_{1}+n-2\right)\left(2 L_{2}+n-4\right)\left(2 l_{1}^{\prime}+n-3\right)\left(2 l_{2}^{\prime}+n-3\right)}{\left(2 L_{1}^{\prime}+n-3\right)\left(2 L_{2}^{\prime}+n-5\right)\left(2 l_{1}+n-2\right)\left(2 l_{2}+n-2\right)}\right)^{1 / 2} \\
& \times\left[\begin{array}{lll}
-l_{1}^{\prime}-n+\frac{5}{2} & -l_{2}-n+\frac{5}{2} & {\left[-L_{2}^{\prime}-n+\frac{7}{2},-L_{1}^{\prime}-n+\frac{7}{2}\right]_{n}} \\
-l_{1}-n+\frac{5}{2} & -l_{2}-n+\frac{5}{2} & {\left[-L_{2}-n+\frac{7}{2},-L_{1}-n+\frac{7}{2}\right]_{n-1}}
\end{array}\right] . \tag{3.3}
\end{align*}
$$

The symmetry of isofactors allowing the interchange of certain reflected parameters of irreps of the group and its subgroup will be called the chain reflection symmetry. Equation (3.3) may be proved with the help of the relation between isofactors of the complementary groups SO_{n} and Sp_{4} (see (1.2) and (1.3)), the usual symmetry properties of $\mathrm{SO}_{5}\left(\mathrm{Sp}_{4}\right)$ isofactors (Hecht 1965) and the elements of substitution groups of parameters of irreps (Ališauskas and Jucys 1969). The phase factor is extrapolated from the isofactors considered in this paper.

Relation (3.1b) for $n=4$ allows us to write a new expression for the special SU_{2} 6j-coefficient:

$$
\begin{align*}
\left\{\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
\alpha & \alpha & \alpha
\end{array}\right\}= & (-1)^{l_{1}+l_{2}+l_{3}} \Delta\left(l_{1} l_{2} l_{3}\right)\left(l_{1}+l_{2}+l_{3}+1\right)! \\
& \times\left(\frac{\left(2 \alpha-l_{1}\right)!\left(2 \alpha-l_{2}\right)!\left(2 \alpha-l_{3}\right)!}{\left(2 \alpha+l_{1}+1\right)!\left(2 \alpha+l_{2}+1\right)!\left(2 \alpha+l_{3}+1\right)!}\right)^{1 / 2} \\
& \times \sum_{=} \frac{(-1)^{2}(4 \alpha+1-z)!2^{--2(r}}{z!\left(2 \alpha-l_{1}-z\right)!\left(2 \alpha-l_{2}-z\right)!\left(2 \alpha-l_{3}-z\right)!} \\
& \times\left[(4 \alpha+1-2 z)!!\left(l_{1}+l_{2}+l_{3}-4 \alpha+2 z\right)!\right]^{-1} . \tag{3.4}
\end{align*}
$$

Here Δ is the triangle coefficient. For some values of parameters, this expression contains only half the number of terms compared with the usual expression of SU_{2} $6 j$-coefficients (see Jucys and Bandzaitis 1977, Biedenharn and Louck 1981). The analogue of this expression can be found in relations between special Saalschutzian ${ }_{4} F_{3}(1)$ series (see (2.5.16) of Slater (1966) together with the equation (11) of 89.2 of Varshalovich et al (1975)).

4. General expression for coupling coefficients of symmetric irreps

General isofactors of type (1.1) for $\mathrm{SO}_{5} \supset \mathrm{SO}_{4}$ in the parametrisation of Ališauskas and Jucys $(1969,1971)$ may be found with the help of the following equation:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\left\langle\Lambda_{1} \Lambda_{1}\right\rangle & \left\langle\Lambda_{2} A_{2}\right\rangle & \langle K \Lambda\rangle \\
I_{1} I_{1} & I_{2} I_{2} & I J
\end{array}\right]\left\langle\begin{array}{c}
\langle K \Lambda\rangle \\
I J
\end{array}\left\|T^{2 J}\right\| \begin{array}{c}
\langle K \Lambda\rangle \\
K-\Lambda, 0
\end{array}\right\rangle } \\
&= \sum_{x, I^{\prime}} \frac{(2 J+1)!}{x!(2 J-x)!}\left\langle\begin{array}{c}
\left\langle\Lambda_{1} \Lambda_{1}\right\rangle \\
I_{1} I_{1}
\end{array}\left\|T^{v}\right\| \begin{array}{cc}
\left\langle\Lambda_{1} \Lambda_{1}\right\rangle \\
I^{\prime} I^{\prime}
\end{array}\right\rangle \\
& \times\left\langle\begin{array}{ccc}
\left\langle\Lambda_{2} \Lambda_{2}\right\rangle \\
I_{2} I_{2}
\end{array}\left\|T^{2 J-x}\right\|\left\langle\begin{array}{c}
\left\langle\Lambda_{2} \Lambda_{2}\right\rangle \\
I^{\prime} I^{\prime}
\end{array}\right\rangle\left[\begin{array}{ccc}
\left\langle\Lambda_{1} \Lambda_{1}\right\rangle & \left\langle\Lambda_{2} \Lambda_{2}\right\rangle & \langle K \Lambda\rangle \\
I^{\prime} I^{\prime} & I^{\prime} I^{\prime} & K-\Lambda, 0
\end{array}\right]\right. \\
& \times\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)(2 K-2 \Lambda+1)^{1 / 2}\left\{\begin{array}{ccc}
I^{\prime} & \vdots x & I_{1} \\
I^{\prime} & J-\frac{1}{2} x & I_{2} \\
K-1 & J & I
\end{array}\right\} \\
& \times\left\{\begin{array}{ccc}
I^{\prime} & \frac{1}{2} x & I_{1} \\
I^{\prime} & J-\frac{1}{2} x & I_{2} \\
0 & J & J
\end{array}\right\} . \tag{4.1}
\end{align*}
$$

Here the stretched $9 j$-coefficients of SU_{2}, the reduced matrix elements of degrees of the generators of $\mathrm{SO}_{5}\left(\mathrm{Sp}_{4}\right)$ (see (5) and (7) of Ališauskas and Jucys (1971)) and special isofactors of $\mathrm{SO}_{5} \supset \mathrm{SO}_{4}$ of type (2.8) appear. Equation (4.1) was derived acting with the tensorial operator $T_{-+}^{2 J}\left(T_{-+}\right.$is the generator of $\left.\mathrm{Sp}_{4}\right)$ on the coupled state

$$
\left|\begin{array}{c}
\langle K \Lambda\rangle \\
K-\Lambda, K-\Lambda, 0,0
\end{array}\right\rangle
$$

using the Wigner-Eckart theorem and the usual technique of angular momentum theory. It should be noted that the expressions for general isofactors of SU_{3} and SU_{n} have been derived (see Ališauskas 1982, 1983) analogously.

Relations (1.4) and (4.1) allow us to write the expression for the isofactors (1.1) in the following form ($n \geqslant 5$):

$$
\begin{align*}
& {\left[\begin{array}{ccc}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l_{1}^{\prime} & l_{2}^{\prime} & {\left[L_{1}^{\prime} L_{2}^{\prime}\right]_{n-1}}
\end{array}\right] } \\
&= {\left[\left(L_{1}+L_{2}+n-3\right)\left(L_{1}-L_{2}+1\right)\left(2 L_{2}+n-4\right)\left(2 l_{1}^{\prime}+n-3\right)\left(2 l_{2}^{\prime}+n-3\right)\right]^{1 / 2} } \\
& \times\left(\frac{\left(L_{1}+L_{2}^{\prime}+n-4\right)!\left(L_{1}-L_{2}^{\prime}\right)!}{2\left(L_{1}+L_{1}^{\prime}+n-3\right)!\left(L_{1}-L_{2}^{\prime}+1\right)!}\right)^{1 / 2} \sum_{, ~} \frac{\left(L_{1}^{\prime}-L_{2}^{\prime}+1\right)!\left(2 l^{\prime}+n-3\right)^{1 / 2}}{x!\left(L_{1}^{\prime}-L_{2}^{\prime}-x\right)!} \\
& \times(-1)^{\left(l^{\prime}+r-l_{1}^{\prime} / 2\right.} R_{n}\left(l_{1} ; l_{1}^{\prime} l^{\prime} ; x\right) R_{n}\left(l_{2} ; l_{2}^{\prime} l^{\prime} ; L_{1}^{\prime}-L_{2}^{\prime}-x\right) \\
& \times\left|\left\{\begin{array}{ccc}
\frac{1}{2} x & \frac{1}{2}\left(L_{1}^{\prime}-L_{2}^{\prime}-x\right) & \frac{1}{2}\left(L_{1}^{\prime}-L_{2}^{\prime}\right) \\
\frac{1}{2} l_{2}^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2} l_{1}^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2} l^{\prime}+\frac{1}{4}(n-5)
\end{array}\right\}\right| \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} l_{1}^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2} l^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2} x \\
\frac{1}{2} l_{2}^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2} l^{\prime}+\frac{1}{4}(n-5) & \frac{1}{2}\left(L_{1}^{\prime}-L_{2}^{\prime}-x\right) \\
\frac{1}{2}\left(L_{1}^{\prime}+L_{2}^{\prime}+n-5\right) & L_{2}+\frac{1}{2}(n-5) & \frac{1}{2}\left(L_{1}^{\prime}-L_{2}^{\prime}\right)
\end{array}\right\} \\
& \times\left[\begin{array}{lll}
l_{1} & l_{2} & {\left[L_{1} L_{2}\right]_{n}} \\
l^{\prime} & l^{\prime} & {\left[L_{2} L_{2}\right]_{n-1}}
\end{array}\right] \tag{4.2}
\end{align*}
$$

where

$$
\begin{align*}
R_{n}\left(l ; \bar{l}^{\prime} l^{\prime} ; x\right)= & \left\{\left(l-l^{\prime}\right)!\left(l-\bar{l}^{\prime}\right)!\left[\frac{1}{2}\left(l^{\prime}-\bar{l}^{\prime}+x\right)\right]!\left[\frac{1}{2}\left(\bar{l}^{\prime}-l^{\prime}+x\right)\right]!\left(l^{\prime}+\bar{l}^{\prime}+x+n-3\right)!!\right. \\
& \left.\times\left(l^{\prime}+\bar{l}^{\prime}-x+n-5\right)!!/\left(l+l^{\prime}+n-3\right)!\left(l+\overline{l^{\prime}}+n-3\right)!\right\}^{\prime / 2} \\
& \times \sum_{z} \frac{2^{\left(l^{\prime}-\bar{l}^{\prime}\right) / 2+z}\left(l+l^{\prime}+n-3+z\right)!}{z!\left(l-l^{\prime}-z\right)!\left[\frac{1}{2}\left(\bar{l}^{\prime}-l^{\prime}+x\right)-z\right]!\left(l^{\prime}-\bar{l}^{\prime}+z\right)!\left(2 l^{\prime}+n-3+2 z\right)!!} \tag{4.3}
\end{align*}
$$

is the symmetrical part extracted from the analytical continuation of the reduced matrix element. For n odd, the usual stretched $9 j$ - and $6 j$-coefficients of SU_{2} appear on the RHS (the sign of the last one is included in the phase factor). For the calculation of the corresponding $9 j$ - and $6 j$-coefficients with quartervalued parameters, equations (32.13) and (29.14) of Jucys and Bandzaitis (1977) or the corresponding equations (2) of $\S 10.8$ and (3) of $\S 9.5$ of Varshalovich et al (1975) should be applied (see also Sharp 1967).

In a similar way, the new expression for the Clebsch-Gordan coefficients of $\mathrm{SU}_{2}\left(\mathrm{SO}_{3}\right)$

$$
\begin{align*}
{\left[\begin{array}{ccc}
l_{1} & l_{2} & l \\
m_{1} & m_{2} & m
\end{array}\right] } & =(-1)^{l_{1}+l_{2}-l+\delta^{\prime} / 2} \Delta\left(l_{1} l_{2} l\right) m_{1}! \\
& \times\left(\frac{(2 l+1)\left(l_{1}-m_{1}\right)!\left(l_{2}-m_{2}\right)!(l+m)!}{\left(l_{1}+m_{1}\right)!\left(l_{2}+m_{2}\right)!(l-m)!}\right)^{1 / 2} \\
& \times \sum_{k, x} \frac{(-1)^{k-m_{2}+x}(2 k)!(l-k)!\left[\frac{1}{2}\left(l_{1}+l_{2}+l-\delta^{\prime}\right)+k-x\right]!}{\left(k-m_{2}\right)!(m-k)!(l+k)!\left(2 x+\delta^{\prime}\right)!\left(2 k-\delta^{\prime}-2 x\right)!} \\
& \times\left\{\left[\frac{1}{2}\left(l_{1}+l_{2}-l-\delta^{\prime}\right)-x\right]!\left[\frac{1}{2}\left(l_{1}-l_{2}+l-\delta^{\prime}\right)-x\right]!\right. \\
& \left.\times\left[\frac{1}{2}\left(l-l_{1}+l_{2}+\delta^{\prime}\right)-k+x\right]!\right\}^{-1} \tag{4.4}
\end{align*}
$$

is obtained. Here $m_{1} \geqslant 0, m_{2} \geqslant 0, l_{1}$ and m_{1} are integers, $\delta^{\prime}=0$ or 1 so that $l_{1}+l_{2}-l-\delta^{\prime}$ is an even integer and Δ is the triangle coefficient. Expression (4.4) is convenient for small values of m_{1} and m_{2}, in the same way that (4.2) is convenient for small values of $L_{1}^{\prime}-L_{2}^{\prime}$.

The corrected equation (A.2) of Ališauskas and Jucys (1971) (see (32.10) of Jucys and Bandzaitis (1977) \dagger) is the simplest expression for $9 j$-coefficients of SU_{2}, which are proportional to the isofactors of $\mathrm{SO}_{4} \supset \mathrm{SO}_{3}$ (see Hecht 1965) and to special isofactors of $\mathrm{SO}_{5} \supset \mathrm{SO}_{4}\left(\mathrm{Sp}_{4} \supset \mathrm{SU}_{2} \times \mathrm{SU}_{2}\right)$ (see Ališauskas and Jucys 1969).

5. Recoupling coefficients of symmetric irreps of SO_{n}

Recoupling coefficients of three symmetric irreps of SO_{n} may be used for the calculation of the reduced matrix elements of the coupled tensor operators, similar to the Racah coefficients in angular momentum theory. It is convenient to separate more symmetric $6 l$-coefficients for SO_{n}, analogous to $6 j$-coefficients, which satisfy the usual symmetry properties of the latter. We shall denote them (for $n \geqslant 4$) as

$$
\begin{align*}
\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\}_{\left(\mathrm{SO}_{n}\right)} & =\left[\operatorname{dim}_{\mathrm{SO}_{n}(}(e) \operatorname{dim}_{\mathrm{SO}_{\#},}(f)\right]^{-1 / 2}\left[\begin{array}{lll}
e & d & c \\
0 & 0 & 0
\end{array}\right]_{\left(\mathrm{SO}_{n}\right)}^{-1} \\
& \times \sum_{l^{\prime}}\left[\begin{array}{lll}
d & b & f \\
0 & l^{\prime} & l^{\prime}
\end{array}\right]_{\left(\mathrm{SO}_{n}\right)}\left[\begin{array}{lll}
f & a & c \\
l^{\prime} & l^{\prime} & 0
\end{array}\right]_{\left(\mathrm{SO}_{n}\right)}\left[\begin{array}{lll}
a & b & e \\
l^{\prime} & l^{\prime} & 0
\end{array}\right]_{\left(\mathrm{SO}_{n}\right)} \tag{5.1}
\end{align*}
$$

[^2]The dimension of the symmetric irrep of SO_{n} is given by

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{SO}_{\prime},}(l)=(2 l+n-2)(l+n-3)!/(n-2)!l!. \tag{5.2}
\end{equation*}
$$

The perimeters of all four triangles of the $6 l$-coefficient are even. Of course, the recoupling coefficients (5.1) do not form complete recoupling matrices. For $n=3$ and $n=4$ they are reducible to the well known results of angular momentum theory. For $n \geqslant 5$ equation (2.8) allows us to express the $6 /$-coefficient as follows:

$$
\begin{align*}
&\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\}_{\left(\text {son }_{\prime}\right)} \\
&= {\left[\frac{1}{8}(2 c+n-2)(2 d+n-2)(2 e+n-2) / \operatorname{dim}_{\mathrm{sO}_{n}}(e) \operatorname{dim}_{\mathrm{SO}_{n},}(d)\right]^{1 / 2} } \\
& \times\left[\begin{array}{ccc}
d & e & c \\
0 & 0 & 0
\end{array}\right]_{\left(\mathrm{SO}_{n}\right)}^{-1} \sum_{l^{\prime}}(-1)^{(c+d-e) / 2+1+l^{\prime+n}}\left(2 l^{\prime}+n-3\right) \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} b & \frac{1}{2} f+\frac{1}{4} n-1 & \frac{1}{2} d+\frac{1}{4} n-1 \\
\frac{1}{2} f+\frac{1}{4} n-1 & \frac{1}{2}(b+n)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} a & \frac{1}{2} f+\frac{1}{4} n-1 & \frac{1}{2} c+\frac{1}{4} n-1 \\
\frac{1}{2} f+\frac{1}{4} n-1 & \frac{1}{2}(a+n)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} a & \frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{2} e+\frac{1}{4} n-1 \\
\frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{2}(a+n)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\}\left(\frac{l^{\prime}!(n-3)!}{\left(l^{\prime}+n-4\right)!}\right)^{1 / 2} . \tag{5.3}
\end{align*}
$$

The sum over l^{\prime} on the rhs of (5.3) is similar to the sum which appears in the Biedenharn-Elliott identity (see (28.7) of Jucys and Bandzaitis 1977). Note in passing that, in the stretched case $(e=a+b)$, this identity and the expression for the stretched $6 j$-coefficients of SU_{2} lead to the following expression for the 61 -coefficient:

$$
\begin{align*}
&\left\{\begin{array}{ccc}
a & b & a+b \\
d & c & f
\end{array}\right\}_{\left(\mathrm{SO}_{n}\right)} \\
&=\frac{(n-2)!\nabla_{n[3,7]}(c, d ; a+b, 0)}{\nabla_{n[3,7]}(c, f ; a, 0) \nabla_{n[3,7]}(d, f ; b, 0)} \\
& \times\left(\frac{2^{n-3}(n-4)!!a!b!(2 a+n-4)!!(2 b+n-4)!!}{(a+b+n-3)!(2 a+2 b+n-2)!!}\right)^{1 / 2} \tag{5.4}
\end{align*}
$$

The last two factors on the rhs of (5.3) may be expanded as

$$
\begin{align*}
& \left(\frac{l^{\prime}!}{\left(l^{\prime}+n-4\right)!}\right)^{1 / 2}\left\{\begin{array}{ccc}
\frac{1}{2} a & \frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{2} e+\frac{1}{4} n-1 \\
\frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{2}(a+n)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} \\
& =\nabla_{n[0,3,5,6]}(a, b ; e, 0) \frac{2^{e+n / 2-1}}{(n-6)!!} \sum_{\mathrm{g} \geqslant e}(-1)^{(g-e) / 2} \frac{(g+n-3)(g-e+n-6)!!}{\left[\frac{1}{2}(g-e)\right]!(g+e+n-2)!!} \\
& \times\left[\frac{1}{2}(e+g)+n-4\right]!\left(\frac{\left[\frac{1}{2}(a-b+g)\right]!\left[\frac{1}{2}(b-a+g)\right]!}{\left[\frac{1}{2}(a-b+g)+n-4\right]!\left[\frac{1}{2}(b-a+g)+n-4\right]!}\right)^{1 / 2} \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} a & \frac{1}{2}(b+n)-2 & \frac{1}{2}(g+n)-2 \\
\frac{1}{2} b & \frac{1}{2}(a+n)-2 & l^{\prime}+\frac{1}{2} n-2
\end{array}\right\} . \tag{5.5}
\end{align*}
$$

Formula (5.5) is obtained from the inverse of the expansion, following from the Biedenharn-Elliott identity applied to the product of two $6 j$-coefficients:

$$
\left\{\begin{array}{ccc}
\frac{1}{2} b & \frac{1}{2}(b+n)-2 & l^{\prime}+\frac{1}{2} n-2 \tag{5.6}\\
\frac{1}{2} a & \frac{1}{2}(a+n)-2 & \frac{1}{2}(g+n)-2
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} b & \frac{1}{2}(b+n)-2 & l^{\prime}+\frac{1}{2} n-2 \\
\frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{2} b+\frac{1}{4} n-1 & \frac{1}{4} n-1
\end{array}\right\}
$$

with the help of the equation (3.8) of Ališauskas (1978b), adapted originally for biorthogonal systems of $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ isofactors.

The Biedenharn-Elliott identity applied once again to (5.3), substituted by (5.5), gives the following expression for the $6 l$-coefficient of $\mathrm{SO}_{n}(n \geqslant 5)$:

$$
\begin{align*}
\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\}_{\left(\mathrm{SO}_{n}\right)} & =2^{e+n-4}(n-2)!(n-4) \nabla_{n[0,3,5,6]}(a, b ; e, 0) \\
& \times \nabla_{n[0,1,2,3]}(c, d ; e, 0) \sum_{8 ; e}(-1)^{(x-e) / 2} \frac{(g+n-3)(g-e+n-6)!!}{\left[\frac{1}{2}(g-e)\right]!(g+e+n-2)!!} \\
& \times\left[\frac{1}{2}(e+g)+n-4\right]!\left(\frac{\left[\frac{1}{2}(a-b+g)\right]!\left[\frac{1}{2}(b-a+g)\right]!}{\left[\frac{1}{2}(a-b+g)+n-4\right]!\left[\frac{1}{2}(b-a+g)+n-4\right]!}\right)^{1 / 2} \\
& \times\left\{\begin{array}{ccc}
\frac{1}{2} a & \frac{1}{2}(b+n)-2 & \frac{1}{2}(g+n)-2 \\
\frac{1}{2} d+\frac{1}{4} n-1 & \frac{1}{2} c+\frac{1}{4} n-1 & \frac{1}{2} f+\frac{1}{4} n-1
\end{array}\right\} \\
& \times\left\{\begin{array}{lll}
\frac{1}{2}(a+n)-2 & \frac{1}{2} b & \frac{1}{2}(g+n)-2 \\
\frac{1}{2} d+\frac{1}{4} n-1 & \frac{1}{2} c+\frac{1}{4} n-1 & \frac{1}{2} f+\frac{1}{4} n-1
\end{array}\right\} . \tag{5.7}
\end{align*}
$$

Since (5.7) is rather non-symmetric it is convenient to use the symmetry property of $6 l$-coefficients which allows us to replace $a+b-e$ by the smallest one from twelve corresponding linear combinations of the parameters.

6. Concluding remarks

The explicit expressions obtained demonstrate some new non-trivial applications of the angular momentum theory for compact groups of a higher rank. However, the appearance of $6 j$-coefficients of SU_{2} in these cases still remains unexplained. The crucial result (equations (2.1) and (2.8)) was extrapolated from the $n=3$ and $n=4$ cases and later the proof of it was found. In the context of (4.1) and (4.2) some vague analogy is made with the $\mathrm{SU}_{3} \supset \mathrm{U}_{2}$ isofactors, which for extremal values of parameters are proportional to $6 j$-coefficients of SU_{2} (Ališauskas 1978b, 1982).

References

Ališauskas S J 1974 Liet. Fiz. Rink. 14 861-73 (Sov. Phys.-Coll. (Lit. Fiz. Sb.) 14 no 6, 1)
—— 1976 Liet. Fiz. Rink. 16 359-70 (Sov. Phys.-Coll. 16 no 3, 12-9)
——1978a Liet. Fiz. Rink. 18 567-91 (Sov. Phys.-Coll. 18 no 5, 1-20)
——1978b Liet. Fiz. Rink. 18 701-13 (Sou. Phys.-Coll. 18 no 6, 6-16)

- 1982 Liet. Fiz. Rink. 22 no 2, 13-9 (Sot. Phys.-Coll. 22 no 2, 9-14)
—— 1983 Part. Nucl. 14 1336-79 (Sov. J. Part. Nucl. 14 563-82)
- 1984 J. Phys. A: Math. Gen. 17 2899-926 (corrigendum 1985 J. Phys. A: Math. Gen. 18 737)
- 1986a J. Phys. A: Math. Gen. 19 1761-73
- 1986b Liet. Fiz. Rink. 26 no 5 646-9

Ališauskas S J and Jucys A P 1969 J. Math. Phys. 10 2227-33
—— 1971 J. Math. Phys. 12 594-605 (erratum 1972 J. Math. Phys. 13 575)
Ališauskas S J and Norvaišas E Z 1975 Liet. Fiz. Rink. 15 317-28 (Sov. Phys.-Coll. 15 no 3, 1-8)
Biedenharn L C 1953 J. Math. Phys. 31 287-93
Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics. Encyclopedia of Mathematics and its Applications vol 8 (Reading, MA: Addison-Wesley)
Castilho-Alcarás J A and Vanagas V V 1984 Rev. Brasil Fiz. 14 121-31

- 1985 J. Math. Phys. submitted

Elliott J P 1953 Proc. R. Soc. A 218 345-70
Gavrilik A M 1973 Kiev preprint ITP.73-104R
Hecht K T 1965 Nucl. Phys. 63 177-213
Jucys A P and Bandzaitis A A 1977 Theory of Angular Momentum in Quantum Mechanics (Vilnius: Mokslas)
2nd edn
Kildyushov M S and Kuznetzov G I 1973 Preprint, Institute of Alomic Energy, Moscow
Norvaišas E Z and Ališauskas S J 1974a Liel. Fiz. Rink. 14 443-52 (Sov. Phys.-Coll. 14 no 3, 17-22)

- 1974b Liet. Fiz. Rink. 14 715-25 (Soo. Phys.-Coll. 14 no 5, 5-11)

Sharp R T 1967 Nucl. Phys. A 95 222-8
Slater L J 1966 Generalized Hypergeometric Functions (Cambridge: Cambridge University Press)
Vanagas V 1977 The Microscopic Nuclear Theory (Toronto: University of Toronto Press)

- 1980 Part. Nucl. (Sov. J. Part. Nucl.) 11 454-514

Vanagas V V and Kalinauskas R K 1974 Liet. Fiz. Rink. 14 549-60 (Sot. Phys.- Coll. 14 no 4, 3-10)
Vanagas V V and Katkevičius O D 1983 Liet. Fiz. Rink. 23 no 2, 3-13 (Sov. Phys.-Coll. 23 no 2, 1-9)
Varshalovich D A, Moskalev A N and Khersonsky V K 1975 Quantum Theory of Angular Momentum
(Leningrad: Nauka)

[^0]: † Unfortunately, both corresponding equations (5.1) and (5.4) of Norvaišas and Ališauskas (1974b) contain several errata which are corrected in Ališauskas (1986b).

[^1]: † Other appearances of $6 j$-coefficients with quartervalued parameters are presented and discussed in appendix 4 of Ališauskas (1984).
 \ddagger The corresponding equation (A2.3) of Ališauskas (1984) should be corrected (see the corrigendum and, for phase factor, Alisauskas (1986a).

[^2]: + The corresponding equation (3.326) of Biedenharn and Louck (1981) should be corrected.

